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The stability characteristics for spatially periodic parallel flows of an incompressible 
fluid (both inviscid and viscous) are studied. A general formula for the determination 
of the stability characteristics of periodic flows to long waves is obtained, and applied 
to  approximate numerically the stability curves for the sinusoidal velocity profile. 
The neutral curve for the sinusoidal velocity profile is obtained analytically. The 
stability of two broken-line velocity profiles in an inviscid fluid is studied and the 
results are used to describe the overall pattern for the sinusoidal velocity profile in the 
case of long waves. In an inviscid fluid it is found that all periodic flows (other than 
the trivial flow in which the basic velocity is constant) are unstable to long waves 
with a value of the phase speed determined by simple integrals of the basic flow. In  a 
viscous fluid it is found that the sinusoidal velocity profde is very unstable with the 
inviscid solution being a good approximation to the solution of the viscous problem 
when the value of the Reynolds number is greater than about 20. 

1. Introduction 
Over the last century the stability of parallel flows of incompressible fluids (both 

inviscid and viscious) has been extensively studied. The techniques used usually 
involve examination of the growth of an infinitesimal wave-like perturbation of a 
basic flow of the form U = U ( z )  i .  Squire (1933)  has shown that the three-dimensional 
problem can be reduced to an equivalent tw-o-dimensional problem since the most 
unstable disturbance is two-dimensional. Previously, most of the work on unbounded 
velocity profiles has been concerned with the stability of profiles which are 
uniform as z -+ co. In  this paper we shall consider flows with U ( z )  = U ( z +  A )  for 
some period h and all x .  In  addition to interest in the fundamental phenomena of 
instability of periodic flows there is also interest in various applications. Gill 
(1974), while studying the stability of a finite-amplitude Rossby wave, noted that in 
aparticular limit his problem reduced to that of the stability of a plane parallel 
periodic flow. It appears that the same result will arise for many other kinds of 
waves as a consequence of an analogous limit (see Drazin 1977) .  Our results show 
how finite-amplitude waves in an inviscid fluid in this limit are linearly unstable. 
Green (1974) also considered the stability of a sinusoidally varying velocity profile in 
connection with some work on two-dimensional turbulence. Although the main 
applications of periodic velocity profiles are naturally concerned with waves, periodic 
flows will also arise behind any periodic structure such as a regularly spaced grid. 

The most obvious periodic profile to consider is the sinusoidal velocity profile. It is 
well known that this profile becomes stable to all wave-like perturbations when the 
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boundary separation is less than n (see, for example, Drazin & Howard 1966). One 
might also remark on the general stability characteristics for periodic flows. For an 
inviscid fluid many useful results have been developed for flows with zero normal 
velocity on the boundaries (see, for example, Drazin & Howard 1966). For an un- 
bounded periodic velocity profile it can be shown that the disturbance amplitude 
function is either periodic or bounded according as a certain parameter yI is rational 
or irrational and these general results still hold for the periodic solutions. For yr 
irrational we can tentatively appeal to continuity to obtain the same results. Prob- 
ably the most important of these results is the semicircle theorem (Howard 1961), 
which states that for unstable solutions the phase speed c lies in the semicircle in the 
complex plane defined by 

(cR - &(e +f)j2 + c; < ($(e  --.f)I2, 
where e is the maximum andf the minimum value of U ( z ) .  

It is also interesting to speculate on the existence of a critical stabilizing Reynolds 
number R,. For each unbounded flow of jet type, i.e. with U(m) = U (  -00)  there 
exists a positive R, (Howard 1959) but each unbounded flow of shear-layer type, i.e. 
with U(o3) =+ U ( -  a), has R ,  = 0 (Tatsumi & Gotch 1960). It remains an open 
question as to whether periodic flows have a positive value of R ,  but, for the sn (z,m) 
profile, as the modulus m of this Jacobian elliptic function increases towards 1, the 
value of R, tends to zero because the profile tends to the hyperbolic-tangent shear 
layer. Therefore the critical Reynolds number may be arbitrarily small for some 
period flows. This conclusion is supported by the apparent inability of Synge’s (1938) 
method to give a non-zero critical Reynolds number for a general periodic flow. At 
any rate, it seems likely that any critical Reynolds number must depend on the 
period of the basic flow. 

I n  $ 2  we present the equations of linear stability theory for plane parallel flows 
together with a brief summary of the relevant ideas of Floquet theory which are 
used throughout the rest of the paper. I n  $ 3  we derive, in the case of an inviscid 
fluid, a formula for the complex phase speed for small values of the wavenumber. 
This is followed in $ 4  by derivation of the exact analytic solutions of the inviscid flow 
problem for two broken-line velocity profiles. These exact results are then compared 
with those calculated from the small-wavenumber formula developed in $3.  I n  $5 
we present numerical and analytic results for the inviscid flow problem with a 
sinusoidal velocity profile, and then, in 9 6, we incorporate viscosity into this problem. 
Finally, in 97,  the results presented in the previous sections are discussed and 
compared. 

2. Governing equations and Floquet theory 
Suppose that the basic flow with velocity U*(z*) in the x* direction is dimensionally 

characterized by some length scale L and velocity scale V ;  then we shall choose 
dimensionless variables as follows: z = x*/L, t = t* V / L  and U ( z )  = U*(z*) /V .  We can 
further define a Reynolds number as R = V L / v  where v is the kinematic viscosity of 
the fluid. We then assume that the streamfunction for the perturbation of the basic 
flow is of the form $ = $ ( z )  exp {ia(x - ct)}  in dimensionless form. Here c = cB + ic, is a 
a complex wave velocity and a is a positive wavenumber. Then the sign of cI  determines 
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the stability of the basic flow to this perturbation. The linearized equations of motion 
now lead (cf. Lin 1955) to  the Orr-Sommerfeld equation 

(1) 
1 

kXR 
( U  - c )  (4'' -a") - U"# = - {B' - 2a2#" + a4#}, 

where primes denote differentiation with respect to z. For the case of an inviscid fluid 
(1) reduces to the Rayleigh equation 

( U  - c )  ($4" - $4) - U" = 0. (2) 

Here we are making the usual approximation of nearly parallel flow, assuming that 
U ( z )  i is an exact solution of the Navier-Stokes equation to obtain ( l ) ,  but then taking a 
periodic U ( z )  which is only an approximate solution of the Navier-Stokes equations. 

For the types of problem under consideration where the basic flow U ( z )  has period A, 
both (1) and (2) are examples of a Floquet system. In this section we give the essential 
detailsof theme;hodsofFloquet theoryfor the Orr-Sommerfeldequation (the modifica- 
tions for dealing with the Rayleigh equation are obvious) and the reader is referred to 
Jordan & Smith (1977) for the general techniques of Floquet theory. We define @(z) 
to be the 4 x 4 fundamental matrix of the system ( 1  ) 

d@(z)/dz  = P(z)@(z),  P ( z + A )  = P(z), (3)  

whose elements are (Dij = di-1$4j/dzi-1 for i,j = 1,2,3,4 and are such that @(O) = I ,  the 
identity matrix. The matrix of coefficients P(z) is therefore 

where p41 = - ia3R( U - c )  - iaRU" - a4  and^^^ = iaR( U - c) + 2a2. Floquet's theorem 
then states that if the fundamental matrix @ ( z )  can be determined over any interval of 
the period of z then it is determined for all z since @(z  + A )  = Q ( z )  E, where E is a 
constant non-singular matrix. Therefore, since we have chosen the fundamental matrix 
with CP(0) = I we must have E = * ( A ) .  It can then be shown that independent solu- 
tions of equation (1) may be written in the form 

4 = P(Z) exp {A-llog (p)z), ( 5 )  

for each distinct eigenvaluep of E. The functionp(z) has period A.  When the eigenvalues 
are not all distinct, the coefficients corresponding to the p ( z )  are more complicated. 
The constants p are termed the characteristic multipliersof the Floquet system (3) and 
the corresponding characteristic exponents are determined by the relation y = log ( p ) / h ,  
where the principal value of the logarithm is taken. Therefore, in order to  determine 
solutions which are stable in z i t  is sufficient to compute the matrix @ ( A )  and see 
whether any of its eigenvalues are such that lpl = 1. It should also be noted that 

which gives a useful check on the accuracy of the computa.tions. 
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Equation (1) can not only be integrated directly but also solved by assuming a solu- 
tion of the form 

m 

$ = exp (yz )  C a, exp {2ninz/h}, (7)  
==-a3 

and then truncating the series a t  successively higher orders until convergence is 
plausibly obtained for the calculated values of c. This method is found to be more 
efficient than direct integration for large values of the Reynolds number. 

I n  general we therefore have an eigenvalue relation of the form F(c ,  a2, aR, y )  = 0, 
where F is some integral function of c, a2, aR and y .  To solve the fluid dynamical 
problems, we are interested in the temporal stability of solutions which are bounded 
functions of z ;  so we write c = c(a2, aR, y I ) ,  where y I  is the imaginary part of y .  

We should also note that a solution (5) comprises a function of period h multiplied 
by an exponential factor. This means that if y1h/27r is rational the solution is 
periodic, whereas if yIh/2n is irrational the solution is bounded but not periodic. 

3. The phase velocity for small values of the wavenumber 

the wavenumber a. We seek a solution of (2) in the form 
I n  this section we consider solutions to  the Rayleigh equation (2) for small values of 

$4 = $,+a2$,+ ..., ( 8 )  

for small values of a. Inserting (8) into (2) and equating powers of a2 we then obtain 

( U - c ) & -  U"$,, { (U-c )2 ($ , / (U-c ) ) ' } '  = ( U - C ) $ , - ~ ,  n= i , 2 ,  ... . (9) 

Clearly the zeroth-order equation has solution 

Q0 = A ( U - c ) + B ( U - c )  ( U - C ) - ~ ~ Z ~ ,  (10) r 
for some constants A and B. We now specify two sets of initial conditions a t  the origin : 

(a )  (denoted by subscript a ) ;  

$oa(0) = 1, $,a = 0, n B 1; $'7La(0), n 2 0; 

( b )  (denoted by subscript b )  

&,(0) = 0, n 0; $',JO) = 1, $'nb(O) = 0, n 2 1. 

We can therefore obtain values for the constants A,, B, (initial conditions ( a ) )  and 
A,, B, (initial conditions (b ) ) .  These values are then used t o  give the values of 4, and 
g5'o a t  z = A :  

$,Jh) = 1 - U'(O){ U ( 0 )  - 

I A 

0 
$,b(h) = { U ( 0 )  - c}2/  ( U  - c)-2 dx, 

J $'O*(h) = 1 + U'(O){ U ( 0 )  - ( U  - c ) - 2 d x .  c}JoA 
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Now, because we have a 2 x 2 system, the eigenvalue problem for finding the character- 
istic multipliers p reduces to 

P2 - {#,(A) + $ ' * (Wp + 1 = 0. (13) 

Note that, in obtaining (13), we have used(6).Thismeansthatatzeroth-ordersubstitu- 
tion of (12) into (13) gives (p - 1)2 = 0 for all values of the phase velocity c.  Therefore, 
corresponding characteristic exponents are y = A-llog(p) = 0. We now solve (9) for 
$1 in terms of $07 giving 

$1 = ( U  - C )  ( U  - c ) - ~  ( U  - C )  d~ + E (  U - C )  ( U  - c ) - ~ ~ z ~  + F( U - c ) ,  ( 14) s sz 
for some constants E and F. Proceeding as before, we then obtain values of 
z = h for the two sets of initial conditions ( 1  1 ) .  This gives 

at. 

$,(A) = ( ~ ( 0 )  - ( U  - c ) - 2 j z  ( U  - c )  4odZ1 dz, 
0 0 

( U - C )  $ o d ~ , d ~ + ( U ( O ) - c ) - '  ( U - C ) # ~ ~ Z .  (15) 

We then substitute the two values of $n and add the diagonal terms in the fundamental 
matrix to  obtain the equation forp as 

/ L ~ -  { # o J A )  + $'nb(h) + .a2(4i,(h) + # ' i b ( h ) ) } ~  + 1 = 0, ('6) 

t o  order a2. Now we have 

(jhla(A) + $' lb(A)  =lA ( U  - c)2 jz ( U  - c)-2dx1dz + ( U  -c)-2 ( U  -c)2dz1dz 
0 0 s: s: 

= ( IoA ( U  -C)2dZ) (soA ( U  - c) -2dz) .  

on integration by parts. Therefore (16) becomes 

p2- [2+a2(SUn(U-c )2dz )  (JoA(U-c ) -2dz  )I p + l  = 0, 

which on letting p = e i y l A ,  yields 

cos (hyz)  = 1 + &a2 (soA ( U  - c )2dz )  (soA ( U  - c ) - ~  dz + O(a4) as a + 0. (17) 1 
Now, uponletting yI = aa+O(a2) as 01 -+ 0 for some fixed a ,  we find that equating 
terms of O(a2)  gives (soA ( U  - c)2dz) ( soA ( U  - c)-2dz (18) 

Equation (1 8) yields an expression for the phase velocity c in terms of the parameter 
a = y z / a  for small values of the wavenumber a. Examples of the use of this long-wave 
expression will be given in the next two sections and comparisons are made with analytic 
and numerical results. We note a t  this point that if y r  = 0 then (17) reduces to 
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The values of the phase velocity which make the first integral zero are aIways complex 
(unless U = constant, --oo < z < co) whereas the second integral is bounded for 
complex values of c .  In  passing, we also note that the second integral is singular if c is 
real and between the maximum and minimum values of U .  Thus, all non-constant 
periodic flows are unstable to long-waves with phase velocity 

c = (s,” U d z  f i (s,” u2 dz - (lo* u d z y ) y n .  

I n  theory it would be possible to develop similar expansions for the viscous problem 
but in practice the complexity of the algebra involved with a fourth-order system 
means that numerical computation would be necessary at  some stage, thus defeating 
the object of the exercise. 

4. Broken-line velocity profiles 
As is the case for aperiodic flows (cf. Rayleigh 1945) it is possible to obtain exact 

solutions for various periodic broken-line velocity profiles. Although broken-line 
profiles only give good approximation to continuously varying profiles when the wave- 
number a is small they give rise to simple explicit solutions which illustrate the general 
method well. We have only considered an inviscid fluid because the algebra becomes 
very involved when viscosity is taken into account and because basic flows of a viscous 
fluid do not satisfy the equations of motion when the profile is not smooth. The condi- 
tions of continuity of pressure and normal velocity imply that a t  a discontinuity of U 
or U’ we have 

[( U - c)$’ - U’ $1 = 0 and [$/( U - c ) ]  = 0,  (20) 

where the square brackets denote the difference across the discontinuity of their 
contents. 

(a) The triangular velocityprojile 

Here we consider a flow in which U ( z )  is given by 

22/75 0 c 2 < $77 
U(2)  = 2 - 2 z / n ,  in < z < gn i 2~1n-4,  #n < x < 2n 

with U ( z  + 271) = U ( z ) .  
We now use the two sets of initial conditions a t  zj = O(($ ,  $‘)T = ( l , O ) *  and ($, $’)T = 
(0,  l ) T ,  denoted by subscripts a and b respectively) and proceed, by using the matching 
equations at z = $n and z = $n, to solve the Rayleigh equation ( 2 )  a t  z = 2n. This at 
length gives 

4(csinhna+sinh 2na) 4(cosh 2na- 1) 
+ n2a2(1-c2) 1 (22) 

$,(2n) = cosh 2na - 
na( 1 - c2) 

4(c sinh nu - sinh 2na) 4(cosh 2na - 1 )  
$’b(%) = cash 2n0! + 

na( 1 - c2) + n2a2(1-c2) * 

The equation for the characteristic exponents p i s  then 

p 2 -  {#a(2n)  + $‘b(2n)}p + = O, 
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FIGURE 1.  The stability curves (values of C I  marked) for the triangular velocity profile. The 
dashed curve indicates the small-a approximation to the neutral curve. Note that c(yr)  = c(  - yr)  
and c(yr + I )  = c(y1). Part of the c I  = 0.1 curve has been omitted for the purpose of clarity. 

which, on letting p = exp (2ny,i) and solving for c2, gives 

(23 )  
n2a2 cos 2nyI - n2a2 cosh 2na - 4 cosh 2na + 4an sinh 2na + 4 

a2n2(cos 2nyI - cosh 2na) 
c2 = 

Equation ( 2 3 )  agrees with the long-wave expression (18) for this profile, both these 
results giving c -+ (a2 - 1/3)/( 1 + a2)  as a -+ 0, where a = y I / a .  The stability curves for 
this profile are shown in figure 1. Also as a -+ 00, c -+ f 1 and there are therefore stable 
short waves present on all the discontinuities of the profile (cf. triangular jet in Drazin 
& Howard 1966, p. 38).  The dotted line gives the small-a approximation (equation 
(17)) for the neutral curve (that with cI = 0). It should also be noted that the solution 
is invariant if 1 is added to y I  and that c( - y I )  = c(y,). 

(b)  The square velocity profile 

We now consider a flow in which U(z )  is given by: 

1 ,  O < z < $ n  

U ( z ) =  -1 ,  + r < z < p 7  1 1, $77 < z < 2n 
with U(z+ 277) = U(z ) .  
Following the same procedure as for the triangular wave velocity profile, we obtain a 
quartic equation for c :  

2( 2 - cosh 2na - cos 2ny ) 
C2+ 1 = 0. 

c4+ (cos 2ny,- cosh 2na)  *,. 

Therefore 

(25 ) 
cosh2na- 1 4 

cash 2na - cos 2nyI I -  l -cos2ny ,  4 I , cosh 2na - cos 2ny, 
CR = f 
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FIGURE 2. The stability curves (values of c~ marked) for the rectangular velocity profile. Note that 
c(yr) = c( -71) and c(yr + 1)  = c(y1). The whole of the (a, yr )  plane is unstable. 

Equations (25) have the following points of interest; 
(i) c-+ & i  as y I + 0  foralla; 
(ii) c: + c; = 1 for all a andyI; 
(iii) unstable waves of all lengths are possible; 
(iv) c -+ & i as a -+ 00, the eigenvalues for Helmholtz instability of a vortex sheet at  

each discontinuity. The small wavenumber expansion (18) for this profile gives 
c -+ { & a & i}/( 1 +a2)$ as a -+ 0 where a = y I / a  which agrees with equations (25). The 
stability curves are shown in figure 2 and once again the solution is invariant under the 
addition of 1 to and c( - 71) = c (y I ) ,  as before. 

5. Inviscid stability of a sinusoidal velocity profile 
We now consider the stability of the flow U ( z )  = sin z, - 00 c z c co in an inviscid 

fluid. The stability of this flow has been considered by Lorenz (1972) and Green (1974) 
but they only studied perturbations with the same period as the basic flow. The equation 
to be solved is therefore 

( s i n z - c ) ( ~ ” - a 2 ~ ) + s i n z ~  = 0. (261 

First we shall consider solutions of (26) with c = 0. Consider solutions of the form 
g5 = P(z) exp (iy,z), where P(z) has period 2n. Then substitution into (26) gives 

(sin z - c )  {P” + 2iy, P‘ - (7; + a2) P} + (sin z )  P = 0. (27) 

If c = 0 then it can be seen that (27) has a solution P = constant ( = 1,  say) and y; + a2 
= 1.  This solution is now perturbed by letting 71’ = 1 - a2 - E ,  so that (27) becomes 

P“ + 2i( 1 -as- €)+PI + €P/(Sin z - c). 

Now, upon substitution for P = 1 + sP, + O ( @ )  and c = E C ~  + 0 ( s 2 ) ,  it follows that 

- €C1 + O( €2) 
€Pi + 2€i( 1 - a2 - € ) 3  P; + E = + O(E2). (sin z - ecl + O( e2) )  



The stability of spatially periodic Jlows 469 

0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 3. The valid unstable roots of the sextic equation for c resulting from the use of the small 
tc expansion for the sin z velocity profile. The solid line gives the value of CI and the dashed line 
the corresponding value of C R  at any given value of a = yI/a. c = C R  + i c ~  + 1 as a + co. 

CR 9 C I  

Thus, P';+2i(l--012-€)bP; = - 1 -  c1 + O ( € )  + O( 8 ) .  
(sin z - ecl + 0(s2)) 

Therefore, integration over a period gives 

and so to  zeroth in E we find that c1 = & i. Thus if we perturb the curve y; + a2 = 1 by 
an amount E ,  the resulting perturbation in c is f ~ i .  It can be envisaged from figure 4 
that this perturbation formula is a good approximation except near y I  = 0.5, where it 
is clear that c quickly becomes a non-linear function of 8. 

Before solving the eigenvalue problem (26) numerically, we consider the small- 
wavenumber approximation for this flow. Equation (18) yields the following equation 
for c in terms of a = y I /a :  

(cz - I )* = (1 + 2c2) c/2a2. 

On squaring (this creates some invalid roots), there results a cubic equation for c2, 

f(G) = c6+{( l+3a4) / ( l -u4)}c4+{(~-3a4) / ( l -a4)}c~+a4/ ( l -a4)  = 0. ( 2 8 )  

The discriminant of the cubic f(c2) is A = a4(81a4- 1)/64( 1 - u ~ ) ~  for all real a. Clearly 
A < 0 if a c & and A > 0 if a > Q. Therefore if a c 5 all three roots c2 of equation ( 2 8 )  
are real and if a > 5 two roots are complex conjugate and the third is real. The flow is 
unstable for all values of a (a small) although c -+ 1 as a -+ m. Also, c --f 0 or & i/ J 2  
as a --f 0. The valid unstable roots c = cIt + ic,  of the sextic equation ( 2 8 )  are plotted in 
figure 3 and they were used as estimates in the computations of the 'exact' solution for 
cR =k 0. 
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FIGURE 4. The stability curves (values of cr marked) for the U ( z )  = sin z profile in an inviscid 
fluid. The solid lines have C R  = 0 and the dashed lines have C R  * 0. Note that c( - y r )  = c(yr)  and 
c(yr + 1) = c(y1). For details of the behaviour near 01 = 0 it is preferable to refer t o  figure 4. 

Equation ( 2 6 )  was integrated from z = 0 to  z = 2n by use of a standard Runge- 
Kutta procedure, for fixed values of cz starting with the fundamental matrix 

The eigenvalues ,u of the matrix @(en) were then found, and the corresponding charac- 
teristic multipliers yI calculated. The stability curves on the range 0 < y I  < 4 are 
shown in figure 4 where, once again, there is symmetry and periodicity in y I .  All the 
curves with y I / a  < +as a -+ 0 have cR = 0. I n  order to  obtain the stability curves with 
C, + 0 iteration was used to vary the value of c, (or a) whilst ensuring that yR = 0. 
There is a good check on the computations in that det @(2n) = 1 and if this was not the 
case, t o  five places of decimals, the step length used in the integrations was decreased. 

6. Viscous stability of a sinusoidally varying velocity profile 
Following the problem for an inviscid fluid in the previous section we next look at  the 

corresponding problem for a viscous fluid. I n  this section we shall expand the solution 
of the Orr-Sommerfeld equation in Fourier series and therefore, for ease of comparison 
with Green’s (1974)  solution with y I  = 0, we shall transform the independent variable, 
letting z --f z - Qn. This changes the eigenfunction @ but, leaves the eigenvalues c un- 
altered. We therefore consider solutions to  

(cosx-c) ($”-a”)+ cosz$ = (iaR)-l:@’V-2a2#”+a4#} 

with r$ given by 

This yields the following recurrence relation for the coefficients b, : 

+ b n  a ( ( n + y I ) 2 + a 2 ) + C  = 0,  n = O , +  1 ,.... ( 2 9 )  I r I (n+ yz)2+a2- 1 
2((n + y)2  + a2] (‘,+I + bn-1) ( 
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FIGURE 5. The stability curves (values of CI marked) for the U(z )  = sin z profile in 8 viscous fluid 
with R = 20. The solid lines have C R  = 0 and the dashed lines have C R  + 0. The dotted line is the 
perturbation series approximation to the c = 0 curve. Note that c (  -71) = c(y1) and c(yr + 1) = 
c(yr) .  
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FIGURE 6. The stability curves (values of CI marked) for the U ( z )  = sin z profile in a viscous fluid 
with R = 10. The solid lines have C R  = 0 and the dashed lines have C R  $: 0. Note that c (  -71) = 
c(yr)  and c(yr+ 1) =c(yr). 

I f  we truncate the series a t  any given order the possible values of the phase speed c are 
approximated by taking the negative of the eigenvalues of a tri-diagonal matrix 
defined by the relation (29) for given values of a,  R and yI. The number of possible 
values of the phase speed will equal the order of the determinant under consideration. 
However, it is found that beyond the fifth order determinant any new eigenvalues 
which appear lead to stability of the basic flow. These eigenvalues appear to be similar 
to  those found by Gotoh (1965) for the hyperbolic-tangent shear-layer but, because 
they give stable modes, we have not considered them in detail. We have therefore 
solved the problem by truncating the Fourier series a t  successively higher orders until 
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the values of c with cz > 0 satisfy some criterion to indicate convergence. Interpolation 
is then used to obtain the relationship between yz and a in order to remain on a cz = 
constant curve for a fixed value of R. The corresponding value of c, is also found by 
interpolation. It is found that the method always converges (to four places) is the 
eleventh-order determinant is considered (i.e. b,, = 0). 

The direct integration method has also been used to solve the viscous problem but 
when modes with c, $: 0 are being considered (where iteration is necessary) for large R 
the method becomes inefficient compared to the determinant method. It has therefore 
been used principally to check the determinant method at arbitrary points on the 
stability curves. 

The stability curves for R = 20, 10,7 and 4.5 are shown in figures 5-8 respectively. 
The stability curves for R = 1.7 are similar in shape to those for R = 4.5 but with a 
decrease by approximately a factor of ten in the maximum values of cI and yz. Green 
(1974) has pointed out that when yz = 0 the flow is stable for R < 4 2  and as the C, $: 0 
curves disappear at  a value of R such that 6 < R < 7 it seems that this condition will 
again hold (cf. figures 7 and 8). On all the dashed curves in figures 5-7 the value of C, 

is non-zero. It should also be noted that by a similar method to that used to perturb the 
yf + a2 = 1 curve for the inviscid problem we can perturb this curve to find the c = 0 
curve for large aR. This gives yz = (1 - a2)4 - h(aR)-l( 1 - a2)-) + O((aR)-2) as aR 3 co 
which is a good approximation to the c = 0 curve when R = 20 if a > 0.9 but, once 
again, as yI approached 0.5 the behaviour of the stability curves is obviously non- 
linear. This approximation is shown as a dotted line in figure 5 .  

7. Discussion 
In the preceding three sections we have examined the stability of some periodic 

parallel flows. Earlier workers (for a review see, e.g. Drazin & Howard 1966) have 
shown that broken-line profiles give useful approximations to the stability charac- 
teristics of continuously varying velocity profiles for small values of the wave- 
number a. The inviscid stability characteristics of the sinusoidal velocity profile for 
small a are much more complex than those of either the triangular or square wave 
velocity profiles. However some of the qualitative characteristics of the sinusoidal 
velocity profile can be conjectured by the use of the results for broken-line profiles, 
i.e. for large values of u = yz/a the sinusoidal profile is similar to the square wave 
profile (cf. figures 2 and 4) and for small values of yz /a  it is similar to the triangular 
velocity profile (cf. figures 1 and 4). In between there is a rather complicated structure 
which must be a combination of the two extreme broken-line approximations. It 
seems certain that a combination of the two broken-line approximations, e.g. a 
periodic trapezium profile, would provide a better approximation to the sinusoidal 
profile over a larger range of u = yz /a  for small a. 

We have considered the stability of the sinusoidal velocity profile for both viscious 
and inviscid fluids. For the inviscid problem the neutral curve can be specified by 
a = 0 and a = (1 - y;)t for - 8 < yz < 4. The curves with c, $: 0 (dashed lines in 
figure 4) are of three types: 

(i) curves emanating from the origin which reach the line yz = 0-5 (cz < 0.276) ; 
(ii) curves emanating from the origin which have a point where dyz/da = 0 and 

which then return to the corresponding c,  = 0 curve (0.276 < cz < 0.354); 
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FIGURE 7. The stability (values of cz marked) for the U ( z )  = sin z profile in a viscous fluid with 
R = 7. The solid lines have C R  = 0 and the dashed lines have C R  .1. 0. All crossing of the CI = 0 
curves has now ceased. Note that c( -71) = c(yz) and c(y+ 1) = c(y1). 
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FIGURE 8. The stability curves (values of CI marked) for U(z )  = sin z profile in a viscous fluid with 
R = 4.5. C R  = 0 on all curves shown. Note that C (  -71) = c(yz) and that c(yz+ 1) = c(yi). 

(iii) curves emanating from the solid c R  = 0 curves which reach the line yI = 0.5 
(cI < 0.276). 
The latter set of curves was found from those of type (ii) by iterating along a line of 
fixed yI. 

The curves for R = 20 (figure 5 )  closely resemble those for R = 00 (figure 4), the 
main difference being the movement of the cI + 0, c,! = 0 curves away from the 
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origin for yI = 0. There is also a general movement together of the dashed curves 
which have cR $: 0. I n  this case the minimum value of cI on the loops which have 
c R  + 0 is between 0.1635 and 0.1637. Between R = 20 and R = 10 a change takes 
place in the c ,  $: 0 curves and the maximum value of cI on these curves moves away 
from the c R  = 0 curves to the line yI = 0.5 (figure 6). When R = 7 the curves with 
c ,  + 0 have become separated from those with c R  = 0 and there is a stable region 
between the two sets of unstable curves (figure 7) .  This naturally means that the 
crossing of the c = 0 curve by other curves which have c R  = 0, cI > 0 has stopped 
somewhere between R = 7 and R = 10. Further decrease of the Reynolds number to 
6 leads t o  the disappearance of the c R  9 0 curves. When R = 4.5 (figure 8) there is 
only one set of curves present (those with cR = 0)  and the flow is being stabilized as 
R + 4 2 .  

Green (1974) remarked that it seems reasonable for the most unstable mode to have 
the same period as the basic flow (i.e. yI = 0) .  This is seen to  be true for all the 
profiles considered in the present paper. However, although cI is an even function of 
yI ,  there seems no simple mathematical reason to  suppose that yr -- 0 always give the 
most unstable mode. It is also important to note that for the loops with c ,  =I= 0 in 
the inviscid sin ( 2 )  problem the most unstable wave does not have y I  = 0 or 71 = 0.5 
(see figure 4) although the semicircle theorem suggests that cli = 0 gives the most 
unstable mode for this profile. 

The author would like to  thank Dr P. G. Drazin for his help and guidance during 
the preparations of this manuscript and the Science Research Council for the award 
of a Research Studentship. 
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